3.1.13 \(\int \frac {d+e x^3}{x^4 (a+b x^3+c x^6)} \, dx\) [13]

Optimal. Leaf size=112 \[ -\frac {d}{3 a x^3}-\frac {\left (b^2 d-2 a c d-a b e\right ) \tanh ^{-1}\left (\frac {b+2 c x^3}{\sqrt {b^2-4 a c}}\right )}{3 a^2 \sqrt {b^2-4 a c}}-\frac {(b d-a e) \log (x)}{a^2}+\frac {(b d-a e) \log \left (a+b x^3+c x^6\right )}{6 a^2} \]

[Out]

-1/3*d/a/x^3-(-a*e+b*d)*ln(x)/a^2+1/6*(-a*e+b*d)*ln(c*x^6+b*x^3+a)/a^2-1/3*(-a*b*e-2*a*c*d+b^2*d)*arctanh((2*c
*x^3+b)/(-4*a*c+b^2)^(1/2))/a^2/(-4*a*c+b^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {1488, 814, 648, 632, 212, 642} \begin {gather*} -\frac {\left (-a b e-2 a c d+b^2 d\right ) \tanh ^{-1}\left (\frac {b+2 c x^3}{\sqrt {b^2-4 a c}}\right )}{3 a^2 \sqrt {b^2-4 a c}}+\frac {(b d-a e) \log \left (a+b x^3+c x^6\right )}{6 a^2}-\frac {\log (x) (b d-a e)}{a^2}-\frac {d}{3 a x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^3)/(x^4*(a + b*x^3 + c*x^6)),x]

[Out]

-1/3*d/(a*x^3) - ((b^2*d - 2*a*c*d - a*b*e)*ArcTanh[(b + 2*c*x^3)/Sqrt[b^2 - 4*a*c]])/(3*a^2*Sqrt[b^2 - 4*a*c]
) - ((b*d - a*e)*Log[x])/a^2 + ((b*d - a*e)*Log[a + b*x^3 + c*x^6])/(6*a^2)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 814

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x)^m*((f + g*x)/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 1488

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
 Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a,
 b, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {d+e x^3}{x^4 \left (a+b x^3+c x^6\right )} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {d+e x}{x^2 \left (a+b x+c x^2\right )} \, dx,x,x^3\right )\\ &=\frac {1}{3} \text {Subst}\left (\int \left (\frac {d}{a x^2}+\frac {-b d+a e}{a^2 x}+\frac {b^2 d-a c d-a b e+c (b d-a e) x}{a^2 \left (a+b x+c x^2\right )}\right ) \, dx,x,x^3\right )\\ &=-\frac {d}{3 a x^3}-\frac {(b d-a e) \log (x)}{a^2}+\frac {\text {Subst}\left (\int \frac {b^2 d-a c d-a b e+c (b d-a e) x}{a+b x+c x^2} \, dx,x,x^3\right )}{3 a^2}\\ &=-\frac {d}{3 a x^3}-\frac {(b d-a e) \log (x)}{a^2}+\frac {(b d-a e) \text {Subst}\left (\int \frac {b+2 c x}{a+b x+c x^2} \, dx,x,x^3\right )}{6 a^2}+\frac {\left (b^2 d-2 a c d-a b e\right ) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^3\right )}{6 a^2}\\ &=-\frac {d}{3 a x^3}-\frac {(b d-a e) \log (x)}{a^2}+\frac {(b d-a e) \log \left (a+b x^3+c x^6\right )}{6 a^2}-\frac {\left (b^2 d-2 a c d-a b e\right ) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^3\right )}{3 a^2}\\ &=-\frac {d}{3 a x^3}-\frac {\left (b^2 d-2 a c d-a b e\right ) \tanh ^{-1}\left (\frac {b+2 c x^3}{\sqrt {b^2-4 a c}}\right )}{3 a^2 \sqrt {b^2-4 a c}}-\frac {(b d-a e) \log (x)}{a^2}+\frac {(b d-a e) \log \left (a+b x^3+c x^6\right )}{6 a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.04, size = 130, normalized size = 1.16 \begin {gather*} -\frac {d}{3 a x^3}+\frac {(-b d+a e) \log (x)}{a^2}+\frac {\text {RootSum}\left [a+b \text {$\#$1}^3+c \text {$\#$1}^6\&,\frac {b^2 d \log (x-\text {$\#$1})-a c d \log (x-\text {$\#$1})-a b e \log (x-\text {$\#$1})+b c d \log (x-\text {$\#$1}) \text {$\#$1}^3-a c e \log (x-\text {$\#$1}) \text {$\#$1}^3}{b+2 c \text {$\#$1}^3}\&\right ]}{3 a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^3)/(x^4*(a + b*x^3 + c*x^6)),x]

[Out]

-1/3*d/(a*x^3) + ((-(b*d) + a*e)*Log[x])/a^2 + RootSum[a + b*#1^3 + c*#1^6 & , (b^2*d*Log[x - #1] - a*c*d*Log[
x - #1] - a*b*e*Log[x - #1] + b*c*d*Log[x - #1]*#1^3 - a*c*e*Log[x - #1]*#1^3)/(b + 2*c*#1^3) & ]/(3*a^2)

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 126, normalized size = 1.12

method result size
default \(-\frac {\frac {\left (a c e -b c d \right ) \ln \left (c \,x^{6}+b \,x^{3}+a \right )}{2 c}+\frac {2 \left (a b e +a c d -b^{2} d -\frac {\left (a c e -b c d \right ) b}{2 c}\right ) \arctan \left (\frac {2 c \,x^{3}+b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}}{3 a^{2}}-\frac {d}{3 a \,x^{3}}+\frac {\left (a e -b d \right ) \ln \left (x \right )}{a^{2}}\) \(126\)
risch \(-\frac {d}{3 a \,x^{3}}+\frac {\ln \left (x \right ) e}{a}-\frac {\ln \left (x \right ) b d}{a^{2}}+\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\left (4 a^{3} c -a^{2} b^{2}\right ) \textit {\_Z}^{2}+\left (4 a^{2} c e -a \,b^{2} e -4 a b c d +b^{3} d \right ) \textit {\_Z} +a c \,e^{2}-b c d e +c^{2} d^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (-14 a^{3} c +4 a^{2} b^{2}\right ) \textit {\_R}^{2}+\left (-7 a^{2} c e +6 a b c d \right ) \textit {\_R} -3 c^{2} d^{2}\right ) x^{3}+a^{3} b \,\textit {\_R}^{2}+\left (-3 a^{2} b e -a^{2} c d +3 a \,b^{2} d \right ) \textit {\_R} +3 a c d e -3 b c \,d^{2}\right )\right )}{3}\) \(197\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^3+d)/x^4/(c*x^6+b*x^3+a),x,method=_RETURNVERBOSE)

[Out]

-1/3/a^2*(1/2*(a*c*e-b*c*d)/c*ln(c*x^6+b*x^3+a)+2*(a*b*e+a*c*d-b^2*d-1/2*(a*c*e-b*c*d)*b/c)/(4*a*c-b^2)^(1/2)*
arctan((2*c*x^3+b)/(4*a*c-b^2)^(1/2)))-1/3*d/a/x^3+(a*e-b*d)/a^2*ln(x)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^3+d)/x^4/(c*x^6+b*x^3+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

________________________________________________________________________________________

Fricas [A]
time = 0.72, size = 409, normalized size = 3.65 \begin {gather*} \left [\frac {{\left (a b x^{3} e - {\left (b^{2} - 2 \, a c\right )} d x^{3}\right )} \sqrt {b^{2} - 4 \, a c} \log \left (\frac {2 \, c^{2} x^{6} + 2 \, b c x^{3} + b^{2} - 2 \, a c + {\left (2 \, c x^{3} + b\right )} \sqrt {b^{2} - 4 \, a c}}{c x^{6} + b x^{3} + a}\right ) - 2 \, {\left (a b^{2} - 4 \, a^{2} c\right )} d + {\left ({\left (b^{3} - 4 \, a b c\right )} d x^{3} - {\left (a b^{2} - 4 \, a^{2} c\right )} x^{3} e\right )} \log \left (c x^{6} + b x^{3} + a\right ) - 6 \, {\left ({\left (b^{3} - 4 \, a b c\right )} d x^{3} - {\left (a b^{2} - 4 \, a^{2} c\right )} x^{3} e\right )} \log \left (x\right )}{6 \, {\left (a^{2} b^{2} - 4 \, a^{3} c\right )} x^{3}}, \frac {2 \, {\left (a b x^{3} e - {\left (b^{2} - 2 \, a c\right )} d x^{3}\right )} \sqrt {-b^{2} + 4 \, a c} \arctan \left (-\frac {{\left (2 \, c x^{3} + b\right )} \sqrt {-b^{2} + 4 \, a c}}{b^{2} - 4 \, a c}\right ) - 2 \, {\left (a b^{2} - 4 \, a^{2} c\right )} d + {\left ({\left (b^{3} - 4 \, a b c\right )} d x^{3} - {\left (a b^{2} - 4 \, a^{2} c\right )} x^{3} e\right )} \log \left (c x^{6} + b x^{3} + a\right ) - 6 \, {\left ({\left (b^{3} - 4 \, a b c\right )} d x^{3} - {\left (a b^{2} - 4 \, a^{2} c\right )} x^{3} e\right )} \log \left (x\right )}{6 \, {\left (a^{2} b^{2} - 4 \, a^{3} c\right )} x^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^3+d)/x^4/(c*x^6+b*x^3+a),x, algorithm="fricas")

[Out]

[1/6*((a*b*x^3*e - (b^2 - 2*a*c)*d*x^3)*sqrt(b^2 - 4*a*c)*log((2*c^2*x^6 + 2*b*c*x^3 + b^2 - 2*a*c + (2*c*x^3
+ b)*sqrt(b^2 - 4*a*c))/(c*x^6 + b*x^3 + a)) - 2*(a*b^2 - 4*a^2*c)*d + ((b^3 - 4*a*b*c)*d*x^3 - (a*b^2 - 4*a^2
*c)*x^3*e)*log(c*x^6 + b*x^3 + a) - 6*((b^3 - 4*a*b*c)*d*x^3 - (a*b^2 - 4*a^2*c)*x^3*e)*log(x))/((a^2*b^2 - 4*
a^3*c)*x^3), 1/6*(2*(a*b*x^3*e - (b^2 - 2*a*c)*d*x^3)*sqrt(-b^2 + 4*a*c)*arctan(-(2*c*x^3 + b)*sqrt(-b^2 + 4*a
*c)/(b^2 - 4*a*c)) - 2*(a*b^2 - 4*a^2*c)*d + ((b^3 - 4*a*b*c)*d*x^3 - (a*b^2 - 4*a^2*c)*x^3*e)*log(c*x^6 + b*x
^3 + a) - 6*((b^3 - 4*a*b*c)*d*x^3 - (a*b^2 - 4*a^2*c)*x^3*e)*log(x))/((a^2*b^2 - 4*a^3*c)*x^3)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**3+d)/x**4/(c*x**6+b*x**3+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 3.91, size = 128, normalized size = 1.14 \begin {gather*} \frac {{\left (b d - a e\right )} \log \left (c x^{6} + b x^{3} + a\right )}{6 \, a^{2}} - \frac {{\left (b d - a e\right )} \log \left ({\left | x \right |}\right )}{a^{2}} + \frac {{\left (b^{2} d - 2 \, a c d - a b e\right )} \arctan \left (\frac {2 \, c x^{3} + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{3 \, \sqrt {-b^{2} + 4 \, a c} a^{2}} + \frac {b d x^{3} - a x^{3} e - a d}{3 \, a^{2} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^3+d)/x^4/(c*x^6+b*x^3+a),x, algorithm="giac")

[Out]

1/6*(b*d - a*e)*log(c*x^6 + b*x^3 + a)/a^2 - (b*d - a*e)*log(abs(x))/a^2 + 1/3*(b^2*d - 2*a*c*d - a*b*e)*arcta
n((2*c*x^3 + b)/sqrt(-b^2 + 4*a*c))/(sqrt(-b^2 + 4*a*c)*a^2) + 1/3*(b*d*x^3 - a*x^3*e - a*d)/(a^2*x^3)

________________________________________________________________________________________

Mupad [B]
time = 9.57, size = 2500, normalized size = 22.32 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^3)/(x^4*(a + b*x^3 + c*x^6)),x)

[Out]

(log(x)*(a*e - b*d))/a^2 - (log((((((((a*e - b*d + a^2*(-(a*b*e - b^2*d + 2*a*c*d)^2/(a^4*(4*a*c - b^2)))^(1/2
))*((27*b^2*c^3*(a*b*e - b^2*d + a*c*d))/a + (9*b*c^4*x^3*(2*b^2*d + 7*a*b*e - 28*a*c*d))/a + (9*b^2*c^3*(a*b
+ 4*b^2*x^3 - 14*a*c*x^3)*(a*e - b*d + a^2*(-(a*b*e - b^2*d + 2*a*c*d)^2/(a^4*(4*a*c - b^2)))^(1/2)))/(2*a^2))
)/(6*a^2) - (3*c^5*d*x^3*(11*b^2*d - 14*a*b*e + 14*a*c*d))/a^2 + (9*b*c^4*d*(3*a*b*e - 3*b^2*d + a*c*d))/a^2)*
(a*e - b*d + a^2*(-(a*b*e - b^2*d + 2*a*c*d)^2/(a^4*(4*a*c - b^2)))^(1/2)))/(6*a^2) + (c^5*d^2*(9*a*b*e - 9*b^
2*d + a*c*d))/a^3 + (c^6*d^2*x^3*(7*a*e - 12*b*d))/a^3)*(a*e - b*d + a^2*(-(a*b*e - b^2*d + 2*a*c*d)^2/(a^4*(4
*a*c - b^2)))^(1/2)))/(6*a^2) + (c^6*d^3*(a*e - b*d))/a^4 - (c^7*d^4*x^3)/a^4)*(((((((b*d - a*e + a^2*(-(a*b*e
 - b^2*d + 2*a*c*d)^2/(a^4*(4*a*c - b^2)))^(1/2))*((27*b^2*c^3*(a*b*e - b^2*d + a*c*d))/a + (9*b*c^4*x^3*(2*b^
2*d + 7*a*b*e - 28*a*c*d))/a - (9*b^2*c^3*(a*b + 4*b^2*x^3 - 14*a*c*x^3)*(b*d - a*e + a^2*(-(a*b*e - b^2*d + 2
*a*c*d)^2/(a^4*(4*a*c - b^2)))^(1/2)))/(2*a^2)))/(6*a^2) + (3*c^5*d*x^3*(11*b^2*d - 14*a*b*e + 14*a*c*d))/a^2
- (9*b*c^4*d*(3*a*b*e - 3*b^2*d + a*c*d))/a^2)*(b*d - a*e + a^2*(-(a*b*e - b^2*d + 2*a*c*d)^2/(a^4*(4*a*c - b^
2)))^(1/2)))/(6*a^2) + (c^5*d^2*(9*a*b*e - 9*b^2*d + a*c*d))/a^3 + (c^6*d^2*x^3*(7*a*e - 12*b*d))/a^3)*(b*d -
a*e + a^2*(-(a*b*e - b^2*d + 2*a*c*d)^2/(a^4*(4*a*c - b^2)))^(1/2)))/(6*a^2) - (c^6*d^3*(a*e - b*d))/a^4 + (c^
7*d^4*x^3)/a^4))*(3*b^3*d - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(2*(36*a^3*c - 9*a^2*b^2)) - d/(3*a*x^3) - (
atan((48*a^8*x^3*((((((((((18*a^3*b^3*c^4*d + 63*a^4*b^2*c^4*e - 252*a^4*b*c^5*d)/a^4 + ((108*a^4*b^4*c^3 - 37
8*a^5*b^2*c^4)*(3*b^3*d - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(2*a^4*(36*a^3*c - 9*a^2*b^2)))*(a*b*e - b^2*d
 + 2*a*c*d))/(6*a^2*(4*a*c - b^2)^(1/2)) + ((108*a^4*b^4*c^3 - 378*a^5*b^2*c^4)*(a*b*e - b^2*d + 2*a*c*d)*(3*b
^3*d - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(12*a^6*(4*a*c - b^2)^(1/2)*(36*a^3*c - 9*a^2*b^2)))*(3*b^3*d - 3
*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(2*(36*a^3*c - 9*a^2*b^2)) - (((42*a^3*c^6*d^2 + 33*a^2*b^2*c^5*d^2 - 42*
a^3*b*c^5*d*e)/a^4 - (((18*a^3*b^3*c^4*d + 63*a^4*b^2*c^4*e - 252*a^4*b*c^5*d)/a^4 + ((108*a^4*b^4*c^3 - 378*a
^5*b^2*c^4)*(3*b^3*d - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(2*a^4*(36*a^3*c - 9*a^2*b^2)))*(3*b^3*d - 3*a*b^
2*e + 12*a^2*c*e - 12*a*b*c*d))/(2*(36*a^3*c - 9*a^2*b^2)))*(a*b*e - b^2*d + 2*a*c*d))/(6*a^2*(4*a*c - b^2)^(1
/2)))*(3*b^3*d - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(2*(36*a^3*c - 9*a^2*b^2)) - (((((((18*a^3*b^3*c^4*d +
63*a^4*b^2*c^4*e - 252*a^4*b*c^5*d)/a^4 + ((108*a^4*b^4*c^3 - 378*a^5*b^2*c^4)*(3*b^3*d - 3*a*b^2*e + 12*a^2*c
*e - 12*a*b*c*d))/(2*a^4*(36*a^3*c - 9*a^2*b^2)))*(a*b*e - b^2*d + 2*a*c*d))/(6*a^2*(4*a*c - b^2)^(1/2)) + ((1
08*a^4*b^4*c^3 - 378*a^5*b^2*c^4)*(a*b*e - b^2*d + 2*a*c*d)*(3*b^3*d - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(
12*a^6*(4*a*c - b^2)^(1/2)*(36*a^3*c - 9*a^2*b^2)))*(a*b*e - b^2*d + 2*a*c*d))/(6*a^2*(4*a*c - b^2)^(1/2)) + (
(108*a^4*b^4*c^3 - 378*a^5*b^2*c^4)*(a*b*e - b^2*d + 2*a*c*d)^2*(3*b^3*d - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d
))/(72*a^8*(4*a*c - b^2)*(36*a^3*c - 9*a^2*b^2)))*(a*b*e - b^2*d + 2*a*c*d))/(6*a^2*(4*a*c - b^2)^(1/2)) + (((
7*a^2*c^6*d^2*e - 12*a*b*c^6*d^3)/a^4 - (((42*a^3*c^6*d^2 + 33*a^2*b^2*c^5*d^2 - 42*a^3*b*c^5*d*e)/a^4 - (((18
*a^3*b^3*c^4*d + 63*a^4*b^2*c^4*e - 252*a^4*b*c^5*d)/a^4 + ((108*a^4*b^4*c^3 - 378*a^5*b^2*c^4)*(3*b^3*d - 3*a
*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(2*a^4*(36*a^3*c - 9*a^2*b^2)))*(3*b^3*d - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*
c*d))/(2*(36*a^3*c - 9*a^2*b^2)))*(3*b^3*d - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(2*(36*a^3*c - 9*a^2*b^2)))
*(a*b*e - b^2*d + 2*a*c*d))/(6*a^2*(4*a*c - b^2)^(1/2)) - ((108*a^4*b^4*c^3 - 378*a^5*b^2*c^4)*(a*b*e - b^2*d
+ 2*a*c*d)^3*(3*b^3*d - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(432*a^10*(4*a*c - b^2)^(3/2)*(36*a^3*c - 9*a^2*
b^2)))*(4*b^5*d - 7*a^3*c^2*e - 4*a*b^4*e - 16*a*b^3*c*d + 9*a^2*b*c^2*d + 15*a^2*b^2*c*e))/(16*a^4*c^3*(49*a^
3*c*e^2 - 12*b^4*d^2 - 12*a^2*b^2*e^2 + a^2*c^2*d^2 + 24*a*b^3*d*e + 48*a*b^2*c*d^2 - 97*a^2*b*c*d*e)) - (((((
((((18*a^3*b^3*c^4*d + 63*a^4*b^2*c^4*e - 252*a^4*b*c^5*d)/a^4 + ((108*a^4*b^4*c^3 - 378*a^5*b^2*c^4)*(3*b^3*d
 - 3*a*b^2*e + 12*a^2*c*e - 12*a*b*c*d))/(2*a^4*(36*a^3*c - 9*a^2*b^2)))*(a*b*e - b^2*d + 2*a*c*d))/(6*a^2*(4*
a*c - b^2)^(1/2)) + ((108*a^4*b^4*c^3 - 378*a^5*b^2*c^4)*(a*b*e - b^2*d + 2*a*c*d)*(3*b^3*d - 3*a*b^2*e + 12*a
^2*c*e - 12*a*b*c*d))/(12*a^6*(4*a*c - b^2)^(1/2)*(36*a^3*c - 9*a^2*b^2)))*(a*b*e - b^2*d + 2*a*c*d))/(6*a^2*(
4*a*c - b^2)^(1/2)) + ((108*a^4*b^4*c^3 - 378*a^5*b^2*c^4)*(a*b*e - b^2*d + 2*a*c*d)^2*(3*b^3*d - 3*a*b^2*e +
12*a^2*c*e - 12*a*b*c*d))/(72*a^8*(4*a*c - b^2)*(36*a^3*c - 9*a^2*b^2)))*(3*b^3*d - 3*a*b^2*e + 12*a^2*c*e - 1
2*a*b*c*d))/(2*(36*a^3*c - 9*a^2*b^2)) - (((7*a^2*c^6*d^2*e - 12*a*b*c^6*d^3)/a^4 - (((42*a^3*c^6*d^2 + 33*a^2
*b^2*c^5*d^2 - 42*a^3*b*c^5*d*e)/a^4 - (((18*a^3*b^3*c^4*d + 63*a^4*b^2*c^4*e - 252*a^4*b*c^5*d)/a^4 + ((108*a
^4*b^4*c^3 - 378*a^5*b^2*c^4)*(3*b^3*d - 3*a*b^...

________________________________________________________________________________________